M1. (a) 1,0 X, -I ( $\mathrm{X}=$ negligible / very small / (1/1840) to (1/2000), but not nothing 2 for 4 correct 1 for 2/3 correct
(b) has a nucleus which is positive charge negative charges (electrons) orbit nucleus each for 1 mark

M2. (a) 90
for one mark
(b) (i) neutron
for one mark
(ii) nucleus
for one mark
(iii) electron
for one mark
(c) (i) 100
for one mark
(ii) 157
for one mark

M3. (a) Y and Z
they have the same number of protons or same atomic number accept they have the same number of electrons or same number of protons and electrons allow only different in number of neutrons N.B. independent marks
(b) Quality of written communication
for correct use of terms underlined in $B$ or $C$ $Q \vee \mathbf{~} \mathbf{x}$

A - alpha particle passes straight through the empty space of the atom or it is a long way from the nucleus
describes 3 tracks correctly for 2 marks
describes 2 or 1 track correctly for 1 mark
B - alpha particle deflected / repelled / repulsed by the (positive) nucleus
C - alpha particle heading straight for the nucleus is deflected / repelled / repulsed backwards
do not accept hits the nucleus
do not accept answers referring to refraction
do not accept answers in terms of reflected backwards unless qualified in terms of repulsion
mention of difference in charge on nucleus negates that track

M5. (a) (i) $\mathbf{P}$
(ii) $\mathbf{Q}$
(b) 3 lines correct

allow 1 mark for 1 correct line
two lines drawn from any source or box - both incorrect
(c) (i) K
(ii) 56
accept $50-60$ inclusive
(iii) K
(iv) to inject... tracer

1

M6. (a)

| Particle | Relative <br> Mass | Relative <br> charge |
| :---: | :---: | :---: |
| Proton | 1 |  |
| Neutron |  | 0 |

accept one, accept +1
do not accept -1
accept zero
do not accept no charge/ nothing/neutral unless given with 0
(b) equal numbers/amounts of protons and electrons
protons and electrons have equal but opposite charge
accept protons charge +1 and electron charge -1 accept (charge) on proton cancels/balances (charge) on electron accept positive (charges) cancel out the negative(charges)
neutrons have no charge is neutral do not accept total charge of protons, electrons (and neutrons) is 0 unless qualified
(c) (i) (3) fewer neutrons
accept lower/ smaller mass number
do not accept different numbers of neutrons
any mention of fewer/more protons/electrons negates mark accept answers in terms of U-238 providing U-238 is specifically stated i.e. U-238 has (3) more neutrons
(ii) neutron
(iii) (nuclear) fission accept fision
do not accept any spelling that may be taken as fusion

M7. (a) (i) K and L
both answers required either order
(ii) (1) same number of protons
accept same number of electrons accept same atomic number
(2) different numbers of neutrons
(b) (i) 90
(ii) 140
(c) alpha (particle)
reason may score even if beta or gamma is chosen
mass number goes down by 4or
number of protons and neutrons goes down by 4
or
number of neutrons goes down by 2
candidates that answer correctly in terms of why gamma and beta decay are not possible gain full credit
atomic / proton number goes down by 2 or number of protons goes down by 2
accept an alpha particle consists of 2 neutrons and 2 protons for 1 mark
accept alpha equals ${ }^{4}{ }^{4} \mathrm{He}$ or ${ }^{4} 2 \alpha$ for 1 mark
an alpha particle is a helium nucleus is insufficient for this mark
M8. (a) L J K all 3 in correct order allow 1 mark for 1 correct
(b) number of electrons = number of protons
accept amount for number
(c) neutrons this answer only
(d) loses / gains electron(s)

M9. (a) (i) any one from:

- food / drink
- rocks / building materials
- cosmic rays / rays from space accept correctly named example
(ii) any one from:
- nuclear power / coal power (stations) accept nuclear waste
- nuclear accidents accept named accident eg Chernobyl
- nuclear weapons testing accept named medical procedure which involves a radioactive source accept radiotherapy nuclear activity / radiation is insufficient do not accept CT scans
(iii) different number of / fewer protons accept does not have 86 protons accept only has 84 protons
ordifferent atomic number do not accept bottom number different reference to mass number negates this mark
(b) 168 accept 169 if clear, correct method is shown allow 1 mark for a correct dose ratio involving the spine eg 2:140 etc or ratio of days to dose is 1.2 or ratio of dose to days is 0.83
(c)

| Group A | Group <br> B |
| :---: | :---: |
| J M O | K L N |

all correct
any order within each group
(ii) similar (number) / same (number) / large (number)
accept the same specific number in each group eg three reference to other factors such as age is neutral
(iii) how many people in each group developed cancer a clear comparison is required
(iv)there are no marks for Yes or No the
mark is for the reason
Yes
the benefit of having the scan is greater than the riskorthe risk is (very) small (compared to the chance from natural causes)
accept the risk is much greater from natural causes

## No

no additional risk is acceptable

